∫(arctanx)/(x^2(x^2+1))dx
let
x=tana
dx = (seca)^2da
∫(arctanx)/(x^2(x^2+1))dx
= ∫ [a/(tana)^2] da
=-∫ ad(cota+a)
= -a(cota+a) + ∫ (cota+a)da
= -a(cota+a) + ln|sina| + a^2/2 + C
=-arctanx( 1/x + arctanx) + ln|x/√(1+x^2) | + (arctanx)^2/2 + C
=-(1/x)arctanx -(arctanx)^2/2 +ln|x/√(1+x^2) |+ C