(1+2+……+n)=(1+n)*n/2=1/2(n^2+n)
1=1/2(1^2+1)
(1+2)=1/2(2^2+2) n=2
(1+2+3) n=3 (1+2+3)=1/2(3^2+3)
.
.
.
(1+2+……+n)=1/2(n^2+n)
把各式相加就得到1+(1+2)+(1+2+3)+……+(1+2+……+n)=1/2[1^2+2^2+3^2+……+n^2+1+2+……+n]
(1+2+……+n)=(1+n)*n/2=1/2(n^2+n)
1=1/2(1^2+1)
(1+2)=1/2(2^2+2) n=2
(1+2+3) n=3 (1+2+3)=1/2(3^2+3)
.
.
.
(1+2+……+n)=1/2(n^2+n)
把各式相加就得到1+(1+2)+(1+2+3)+……+(1+2+……+n)=1/2[1^2+2^2+3^2+……+n^2+1+2+……+n]