数列满足a1=1 an=2an-1-3n+6 设bn=an-3n 求证bn是等比数列
1个回答
因为an=2an-1-3n+6
所以an-3n=2[an-1-3(n-1)]
即bn=2bn-1
因为a1=1,故b1=a1-3=-2不等于0
所以bn是等比数列,公比是2
相关问题
数列{an}中,a1=1,Sn+1=4an+2设bn=an+1-2an,求证{bn}是等比数列,设cn=an/3n-1,
已知数列an满足a1=3an+1=an^2+2an其中n=1,2,3……设bn=log2(an+1),求证数列是等比数列
(2010•莒县模拟)设数列{an}为等比数列,数列{bn}满足bn=na1+(n-1)a2+…+2an-1+an,n∈
已知数列{an}、{bn}、{cn}满足(an+1-an)(bn+1-bn)=cn,n∈N*.(1)设an=1/3^n,
设数列{An}的前n项和为Sn,且满足Sn=2An-3n,n=1,2,3……(1)设Bn=An+3,求证:数列{Bn}是
数列{an}满足a(n+1)=3an-2/2an-1,且a1=2.(1)设bn=1/an-1,求证{bn}为等差数列.(
数列{an}满足a1=1,an^2=(2an+1)a(n+1),令bn=lg(1+1/an),求证{bn}为等比数列
在数列an中a1=2,a(n+1)下标=4an-3n+1 1设bn=an-n求证bn是等比数列 2求数列an的前n项和s
数列an中,a1=3,an=(3an-1-2)/an-1,数列bn满足bn=an-2/1-an,证明bn是等比数列 2.
已知数列an,a1=1,an+2a(n+1)+6n+4=0,若bn=an+2n,(1)求证bn是等比数列(2)求数列an