设△ABC三点坐标分别是(x1,y1)(x2,y2),(x3,y3),G(x,y)
则
GA^2+GB^2+GC^2
=(x-x1)^2+(y-y1)^2+(x-x2)^2+(y-y2)^2+(x-x3)^2+(y-y3)^2
=3x^2-2(x1+x2+x3)+(x1^2+x2^2+x3^3)+3y^2-2(y1+y2+y3)+(y1^2+y2^2+y3^3)
根据二次函数性质,要使上式取最小值,需要
x=(x1+x2+x3)/3,y=(y1+y2+y3)/3
即G为△ABC的重心时,GA^2+GB^2+GC^2最小