lim x→∞ [1+2+3+……+(n+1)]/n²;
2个回答
lim x→∞ [1+2+3+……+(n+1)]/n²
=lim x→∞n(n+1)]/2n²
=1/2
相关问题
求(1)lim2n^2-n+1/n2^+3n (2)limx^2+2x/x^2+4x+1 (3)lim(1/1+x-3/
求1.lim(3n-(3n^2+2n)/(n-1)) 2.lim(8+1/(n+1)) 3.lim根号n(根号(n+1)
lim(1/n2+2/n2+3/n2+……n/n2)为什么不等于lim1/n2 +lim2/n2 +lim3/n2……+
一.lim(2/3)^n=?二.lim(3^n+1)/[3^(n+1)+2^n]=?
lim(2^n+3^n)/[2^(n+1)+3^(n+1)] x->无穷 极限值
lim(n->∞) n^2 [x^(1/n)-x^(1/n+1)]
极限导数求极限1.lim(x^2+4)/(x^4-2x^2+2)x→22.lim(n+1)/(n^2-3n+2)n→∞3
lim [1+x^n+(x^2/2)^n]^(1/n)
求下列极限:(1)lim 3n^2-2n+1/8-n^3 n→∞ (2)lim 1+2+3+…+n/n^2 n→∞
lim2^n-3^n/2^n+1+3^n+1