设△ABC的内角A,B,C所对的边分别为a,b,c且acosC+ 1 2 c=b.

1个回答

  • (1)∵accosC+

    1

    2 c=b,

    由正弦定理得2RsinAcosC+

    1

    2 2RsinC=2RsinB,

    即sinAcosC+

    1

    2 sinC=sinB,

    又∵sinB=sin(A+C)=sinAcosC+cosAsinC,

    1

    2 sinC=cosAsinC,

    ∵sinC≠0,

    ∴ cosA=

    1

    2 ,

    又∵0<A<π,

    ∴ A=

    π

    3 .

    (2)由正弦定理得:b=

    asinB

    sinA =

    2sinB

    3 ,c=

    2sinC

    3 ,

    ∴l=a+b+c

    =1+

    2

    3 (sinB+sinC)

    =1+

    2

    3 (sinB+sin(A+B))

    =1+2(

    3

    2 sinB+

    1

    2 cosB)

    =1+2sin(B+

    π

    6 ),

    ∵A=

    π

    3 ,∴B ∈(0,

    3 ) ,∴B+

    π

    6 ∈(

    π

    6 ,

    6 ) ,∴ sin(B+

    π

    6 ) ∈(

    1

    2 ,1] ,

    故△ABC的周长l的取值范围为(2,3].

    (2)另周长l=a+b+c=1+b+c,

    由(1)及余弦定理a 2=b 2+c 2-2bccosA,

    ∴b 2+c 2=bc+1,

    ∴(b+c) 2=1+3bc≤1+3(

    b+c

    2 ) 2

    解得b+c≤2,

    又∵b+c>a=1,

    ∴l=a+b+c>2,

    即△ABC的周长l的取值范围为(2,3].