解题思路:(1)认真观察图象,分别写出该定义域下的函数关系式,定义域取值全部是整数.(2)由(1)的函数解析式,把x值代入函数解析式,求出函数值.(3)根据利润=(售价-成本)×件数,列出利润的表达式,求出最值.
(1)当0<x≤100且x为整数(或x取1,2,3,100)时,y=80;
当100<x≤500且x为整数(或x取101,102,500)时,y=−
1
20x+85;
当x>500且x为整数(或x取501,502,503)时,y=60.
(2)当x=200时,y=−
1
20×200+85=75,
∴所花的钱数为75×200=15000(元).
(3)当100<x≤500且x为整数时,y=−
1
20x+85,
∴w=(y-45)x=(−
1
20x+85-45)x,
∴w=−
1
20x2+40x(8分),
∴w=−
1
20(x-400)2+8000,
∵−
1
20<0,
∴当x=400时,w最大,最大值为8000元.
答:一次批发400件时所获利润最大,最大利润是8000元.
点评:
本题考点: 一次函数的应用.
考点点评: 本题主要考查一次函数的应用,运用函数解决实际问题,比较简单.