证明:⑴过D作DE⊥AB,DF⊥AC,
∵AD平分∠BAC,
∴DE=DF,
∴SΔABD:SΔACD
=1/2×AB×DE:1/2AC×DF
=AB:AC,
⑵过A作AH⊥BC于H,
∴SΔABD:SΔACD
=1/2BD×AH:1/2CD×AH
=BD:CD,
∴AB:AC=BD:CD.
证明:⑴过D作DE⊥AB,DF⊥AC,
∵AD平分∠BAC,
∴DE=DF,
∴SΔABD:SΔACD
=1/2×AB×DE:1/2AC×DF
=AB:AC,
⑵过A作AH⊥BC于H,
∴SΔABD:SΔACD
=1/2BD×AH:1/2CD×AH
=BD:CD,
∴AB:AC=BD:CD.