(1)证明:∵AM⊥PQ于M,过B作BN⊥PQ于N,
∴∠AMC=∠CNB=90°,
∴∠MAC+∠ACM=90°,
∵∠ACB=90°,
∴∠ACM+∠NCB=90°,
∴∠MAC=∠NCB,
∵在△ACM和△CBN中
∠AMC=∠CNB
∠MAC=∠NCB
AC=BC,
∴△ACM≌△CBN(AAS),
∴AM=CN,CM=BN,
∴MN=MC+CN=AM+BN;
(2)(1)中的结论不成立,MN与AM、BN之间的数量关系为MN=AM-BN.理由如下:
∵AM⊥PQ于M,过B作BN⊥PQ于N,
∴∠AMC=∠CNB=90°,
∴∠MAC+∠ACM=90°,
∵∠ACB=90°,
∴∠ACM+∠NCB=90°,
∴∠MAC=∠NCB,
∵在△ACM和△CBN中
∠AMC=∠CNB
∠MAC=∠NCB
AC=BC,
∴△ACM≌△CBN(AAS),
∴AM=CN,CM=BN,
∴MN=CN-CM=AM-BN.