z=arctan(x-y²)
∂z/∂x={1/[1+(x-y²)²]}×(x-y²)'=1/[1+(x-y²)²],那么∂z=∂x/[1+(x-y²)²]
∂z/∂y={1/[1+(x-y²)²]}×(x-y²)'=-2y/[1+(x-y²)²],那么∂z=-2y∂y/[1+(x-y²)²]
所以∂z=∂x/[1+(x-y²)²]-2y∂y/[1+(x-y²)²]
就是在对x或y求偏导数时,只看一个变量(x或y),而把另一个变量看成是常数
z=arctan(x-y²)
∂z/∂x={1/[1+(x-y²)²]}×(x-y²)'=1/[1+(x-y²)²],那么∂z=∂x/[1+(x-y²)²]
∂z/∂y={1/[1+(x-y²)²]}×(x-y²)'=-2y/[1+(x-y²)²],那么∂z=-2y∂y/[1+(x-y²)²]
所以∂z=∂x/[1+(x-y²)²]-2y∂y/[1+(x-y²)²]
就是在对x或y求偏导数时,只看一个变量(x或y),而把另一个变量看成是常数