这里求得是n->∞时的极限lim(1/s1+1/s2+..+1/sn)是吧1/sn=1/(n²+2n)=1/[n(n+2)]=(1/2)[1/n-1/(n+2)]∴1/s1+1/s2+...+1/sn=(1/2)[1/1-1/3+1/2-1/4+1/3-1/5+...+1/n-1/(n+2)]=(1/2)[1+1/2-1/(n+1)-1/(n+2)]=(1/2)...
求无穷等比数列lim((1/s1)+(1/s2)+...+(1/sn))的值,其中sn=n^2+2n
1个回答
相关问题
-
等比数列{an}的a1=1,q>0,则lim(n-->+无穷)S(n+2)/Sn=
-
Sn=(n^2)/2+n/2,Tn=1/S1+1/S2+...+1/Sn,求Tn
-
已知Sn=1/2n(n+1),Tn=S1+S2+S3+.+Sn,求Tn.
-
已知等比数列的前n项和sn,若Sn,S(n+2),S(n+1)成等差数列,求公比
-
等比数列an前n项和sn满足s1,s3,s2成等差数列,求sn
-
数列中,a1=1,Sn=[S(n-1)]/[2S(n-1)+1] (n>=2)求正{1/Sn}是等差数列 求通响
-
已知数列{an}的前n项和为Sn,若S1=1,S2=2,且Sn+1-3Sn+2Sn-1=0(n∈N*且n≥2),求该数列
-
设数列an的前n项和为sn 且s1=2 sn+1=2sn+2 bn=sn+2 求bn是等比数列
-
An=n*a Sn=[n(n+a)]/2 求Bn=1/S1=1/S2+.+1/Sn Cn=1/A1+1/A2+1/(A2
-
设数列{an}前n项和为Sn,若s1=1,s2=2,且Sn+1-3Sn+2Sn-1=0(n>=2,且n∈N^*)判断数列