首先,Q(a,e^(a²))
f'(x)=ae^(ax)
即为切线的斜率
切线:y=ae^(a²)(x-a)+e^(a²)
得R(a-1/a,0)
S△PQR=e^(a²)/(2a)=g(a)
令g'(a)=(2a²-1)e^(a²)/2a²=0
得a²=1/2这是极小值点
得PQR的面积的最小值是根号(2e)/2
首先,Q(a,e^(a²))
f'(x)=ae^(ax)
即为切线的斜率
切线:y=ae^(a²)(x-a)+e^(a²)
得R(a-1/a,0)
S△PQR=e^(a²)/(2a)=g(a)
令g'(a)=(2a²-1)e^(a²)/2a²=0
得a²=1/2这是极小值点
得PQR的面积的最小值是根号(2e)/2