已知f(x)=x^2-ax+a/2(a>0)在区间《0,1》上的最小值为g(a),求g(a)的最大值
1个回答
题目的意思是,当a取何值时,f(x)在[0,1]上的最小值取值最大;
已知f(x)函数开口向上,且在 x=a/2取最小值
(以下为分类讨论)
(1). 当0
相关问题
已知f(x)=x^2-ax+a/2在区间《0,1》上的最大值为g(a),求g(a)的最小值
1.已知f(x)=x²-ax+a/2,(a>0)在区间[0,1]上的最小值为g(x),求g(x)的最大值.
已知函数f(x)=4x2-4ax+a2-2a+2在区间[0,2]上有最小值为g(a),求g(a)的最小值.
已知函数f(x)=4x 2 -4ax+a 2 -2a+2在区间[0,2]上有最小值为g(a),求g(a)的最小值.
已知函数f(x)=4x^2-4ax+a^2-2a+2在区间【0,2】上有最小值为g(a),求g(a)的最小值.
已知函数f(x)=ax^2-x+2a (a≥0) 在区间[1,2]上的最小值为g(a) 求g(a)的表达式,并求g(a)
已知函数f(x)=x^2-ax+a/2(a大于0)在区间【0,1】上的最小值为g(a),
已知函数g(x)=ax2-2ax+1+b(a>0)在区间[2,3]上的最大值为4,最小值为1,记f(x)=g(|x|)
已知函数g(x)=ax²-4ax+b(a>0)在区间【0,1】上有最大值1和最小值-2.设f(x)=g(x)/
已知函数f(x)=x 2 -2ax+3在区间[0,1]上的最大值是g(a),最小值是p(a).