∫ dx/(x-3)(x+2)
=∫ [1/(x-3)-1/(x+2)]/5 dx
=(1/5) {∫ [1/(x-3)]dx-∫ [1/(x+2)]dx}
=(1/5)(ln|x-3|-ln|x+2|)+C
=(1/5)ln|(x-3)/(x+2)|+C
C为任意常数
∫ dx/(x-3)(x+2)
=∫ [1/(x-3)-1/(x+2)]/5 dx
=(1/5) {∫ [1/(x-3)]dx-∫ [1/(x+2)]dx}
=(1/5)(ln|x-3|-ln|x+2|)+C
=(1/5)ln|(x-3)/(x+2)|+C
C为任意常数