(1)
设AB为y=kx+b,∵y=kx+b过A,B两点 ∴{3k+b=0; b=3} 解得{k=-1,b=3}
∴AB的解析式为y=-x+3
(2)
∵OA=OB=3,∠AOB=90° ,CD⊥x轴 ∴∠OAB=∠OBA=45° ,CD=AD ,OD=3-CD
设:CD为X(0 ≤ x<3).(3+x)(3-x)/ 2 = 4√3/3 解得X=√(81-24√3)/3
∴C{3- √(81-24√3)/3,√(81-24√3)/3}
(3)
存在
当OP为斜边时,作PE⊥X轴
∵∠OBP=90° BP=OB=3 ,∴ OP=3√2 ,OE=3 ∴P1(3,3)
当BP为斜边时,
∵OB=OP ∴OP与OA重合,P在X轴上 ∴该假设不成立
当OB为斜边时,作PF⊥X轴
∵∠OPB=90° OP=BP ∴∠BOP=45° ∴∠POE=45° ,OE=PE=OP√2 / 2
∵OB=3 ∴OP=3√2 / 2 ,OE=PE=3/2 ∴P2= (3/2,3/2)