1
n(n+1)(n+2)(n+3)+1=(n^2+3n+1)^2
证明:
n(n+1)(n+2)(n+3)+1
=[(n(n+3)][(n+1)(n+2)]+1
=(n^2+3n+1-1)(n^2+3n+1+1)+1
=(n^2+3n+1)^2-1+1
=(n^2+3n+1)^2
2
n=2000
2000*2001*2002*2003+1
=(2000^2+2000*3+1)^2
=4006001^2
1
n(n+1)(n+2)(n+3)+1=(n^2+3n+1)^2
证明:
n(n+1)(n+2)(n+3)+1
=[(n(n+3)][(n+1)(n+2)]+1
=(n^2+3n+1-1)(n^2+3n+1+1)+1
=(n^2+3n+1)^2-1+1
=(n^2+3n+1)^2
2
n=2000
2000*2001*2002*2003+1
=(2000^2+2000*3+1)^2
=4006001^2