设lim(x->a+)f(x)=lim(x->+∞)f(x)=c
如果f(x)=c对于任意x属于(a,+∞),那么任意一点导数位0.
假如f(x)不恒等于c,那么存在一点x0,使得f(x0)≠c,不失一般性假设f(x0)>c
取d使得f(x0)>d>c,则由连续函数性质知存在x1属于(a,x0)使得f(x1)=d(否则若f(x)恒大于d,取极限得f(a+)≥d>c,矛盾)同样存在x2属于(x0,+∞)使得f(x2)=d.
然后利用微分中值定理就得到结论.
设lim(x->a+)f(x)=lim(x->+∞)f(x)=c
如果f(x)=c对于任意x属于(a,+∞),那么任意一点导数位0.
假如f(x)不恒等于c,那么存在一点x0,使得f(x0)≠c,不失一般性假设f(x0)>c
取d使得f(x0)>d>c,则由连续函数性质知存在x1属于(a,x0)使得f(x1)=d(否则若f(x)恒大于d,取极限得f(a+)≥d>c,矛盾)同样存在x2属于(x0,+∞)使得f(x2)=d.
然后利用微分中值定理就得到结论.