证明:
1)因为:∠C=∠ABC=2∠BAC所以:AB=AC(等角对等边)因为:AD⊥BC所以:∠ADB=∠ADC=90°在△ADB和△ADC中:∠ADB=∠ADC∠ABD=∠ACDAB=AC所以:RT△ADB≌RT△ADC(角角边)所以:∠BAD=∠CAD2)因为:∠C=∠ABC=∠2BAC因为:∠C+∠ABC+∠BAC=180°所以:2∠BAC+2∠BAC+∠BAC=180°解得:∠BAC=36°所以:∠ABC=2∠BAC=72°因为:BE平分∠ABC所以:∠ABE=∠CBE=∠ABC /2=36°所以:∠CBE=36°