1、∵BF平分∠OBE
∴∠OBF=∠GBF
∵BO=BG,BF=BF
∴△OBF≌△GBF
∴OF=FG
∵FG⊥OF
∴△OFG是等腰直角三角形
∴OG=√(OF²+FG²)=√2
2、作OH垂直于OF交AF于H
∵ABCD是正方形,BD、AC是对角线
OA=OB,∠AOB=90°
∵∠HOF=90°(做的OH⊥OF)
∴∠AOH=∠BOF(同为∠HOB的余角)
∵∠AFB=∠AOB=90°
设AF与OB交于M,∠OMA=∠FMB(对顶角)
∴∠OAH(∠OAM)=∠OBF(∠MBF)
在△AHO和△BOF中
OA=OB,∠AOH=∠BOF,
∠OAH=∠OBF
∴△AHO≌△BOF
∴AH=BF,OH=OF
∵OF=FG(第一步已经证明)
∴OH=FG
∵∠OFG=∠HOF=90°(这一步有点问题,∠OFG在第一步是假设的,)
∴OG=FH
AF=AH+HF=BF+OG