证明:
在此三角形中,容易求证,
△ADC≌△CDB≌△ACB,
∴AC:AD=AB:AC,
BC:AB=BD:BC,
AD:DC=DC:DB,
即
AC²=AD*AB,
BC²=BD*AB,
DC²=AD*DB,
∴1/AC²+1/BC²
=AB*(AD+BD)/(AD*AB*BD*AB)
=1/(AD*BD)
=1/DC²,
得证!
证明:
在此三角形中,容易求证,
△ADC≌△CDB≌△ACB,
∴AC:AD=AB:AC,
BC:AB=BD:BC,
AD:DC=DC:DB,
即
AC²=AD*AB,
BC²=BD*AB,
DC²=AD*DB,
∴1/AC²+1/BC²
=AB*(AD+BD)/(AD*AB*BD*AB)
=1/(AD*BD)
=1/DC²,
得证!