∵命题“p或q”为假命题
∴p为假命题且q为假命题
∴应分别讨论p为假和q为假时m的范围
p为假时:
∵x²-(2m-2)x+m²-2m=0
∴x²-2(m-1)x+(m-1)²-1=0
(x-m+1)²-1=0
x-m+1=±1
x1=m-2,x2=m
∵p为假
∴方程在[1,3]上无解
∴①m<1或②m-2<1且m>3或③m-2>3
②式显然无解
有:m<1或m>5
q为假时:
设u=x²+mx+1,y=lnu
∵q为假
∴y的值域不为R
根据对数函数性质,
当且仅当u取不到所有正数时,y的值域不为R
∵二次函数u=x²+mx+1开口向上
∴当且仅当Δ<0时,u取不到所有正数
Δ=m²-4<0
-2<m<2
将使p和q分别为假的m的范围相交,即为最后结果:
m∈(-2,1)