请高手解一道极限题y[n]=1+(1/1!)+(2/2!)+(3/3!)+……+(1/n!) 求lim y[n]
1个回答
y[n]=1+(1/1!)+(2/2!)+(3/3!)+……+(1/n!)
=1+1+(1/1!)+(1/2!)+(1/3!)+……+(1/n!)
所以lim y[n]=2+e
相关问题
请高手解一道极限题y[n]=1+(1/1!)+(1/2!)+(1/3!)+……+(1/n!) 求lim y[n]数列有t
求极限lim [ 2^(n+1)+3^(n+1)]/2^n+3^n (n→∞)
求下列极限:(1)lim 3n^2-2n+1/8-n^3 n→∞ (2)lim 1+2+3+…+n/n^2 n→∞
Lim 【1/1*2+1/2*3+…+1/n(n+1)】 N→∞ 求极限
求极限lim(1+2^n+3^n)^1/n.n-->无穷.
lim(n→∝){1/(1*3)+1/(3*5)+...1/[(2n-1)*(2n+1)]} 求极限
lim n →∞ (1^n+3^n+2^n)^1/n,求数列极限
求下列极限~(大一级别)1.lim(n→∞)3n^2+n+1/n^3+4n^2-12.lim(n→∞)(1/n^2+2/
求下列极限 lim n→正无穷(n^2/1+n^2/2.+n^2/n-1) lim n→正无穷[1*2/1+2*3/1+