设 PB与AD相交于点E,PD与BC相交于点F.∠PBA=∠PBC=α,∠PDA=∠PDC=β
所以 ∠PEA=∠A+α=∠P+β,
∠PFC=∠C+β=∠P+α
两式相加,得 ∠A+∠C+α+β = 2∠P+α+β
所以 2∠P = ∠A+∠C = 44°+56° = 100°
故 ∠P = 50°
设 PB与AD相交于点E,PD与BC相交于点F.∠PBA=∠PBC=α,∠PDA=∠PDC=β
所以 ∠PEA=∠A+α=∠P+β,
∠PFC=∠C+β=∠P+α
两式相加,得 ∠A+∠C+α+β = 2∠P+α+β
所以 2∠P = ∠A+∠C = 44°+56° = 100°
故 ∠P = 50°