设(x^2+3x+6)(x^2+ax+b)=x^4-6x^3+mx^2+nx+36
(x^2+3x+6)(x^2+ax+b)
=x^4+ax^3+bx^2+3x^3+3ax^2+3bx+6x^2+6ax+6b
=x^4+(a+3)x^3+(3a+b+6)x^2+(3b+6a)x+6b=x^4-6x^3+mx^2+nx+36
左右对照可知
a+3=-6
6b=36
3a+b+6=m
3b+6a=n
解得
a=-9
b=6
m=-15
n=-36
所以另一个因式是
x^2-9x+6
设(x^2+3x+6)(x^2+ax+b)=x^4-6x^3+mx^2+nx+36
(x^2+3x+6)(x^2+ax+b)
=x^4+ax^3+bx^2+3x^3+3ax^2+3bx+6x^2+6ax+6b
=x^4+(a+3)x^3+(3a+b+6)x^2+(3b+6a)x+6b=x^4-6x^3+mx^2+nx+36
左右对照可知
a+3=-6
6b=36
3a+b+6=m
3b+6a=n
解得
a=-9
b=6
m=-15
n=-36
所以另一个因式是
x^2-9x+6