设双曲线的参数方程为
{
x=√2·secθ;
y=√2·tanθ;
则令坐标为:点A(√2·secθ1 ,√2·tanθ1);点B(√2·secθ2 ,√2·tanθ2);
则向量OA·向量OB
=2·secθ1·secθ2 + 2·tanθ1·tanθ2
=2·(1+sinθ1·sinθ2)/(cosθ1·cosθ2)
≥2.
设双曲线的参数方程为
{
x=√2·secθ;
y=√2·tanθ;
则令坐标为:点A(√2·secθ1 ,√2·tanθ1);点B(√2·secθ2 ,√2·tanθ2);
则向量OA·向量OB
=2·secθ1·secθ2 + 2·tanθ1·tanθ2
=2·(1+sinθ1·sinθ2)/(cosθ1·cosθ2)
≥2.