[ln(1-3x)/(4x+1)]'
=(4x+1)/(1-3x) [(1-3x)/(4x+1)]'
=(4x+1)/(1-3x) {[(1-3x)'(4x+1)-(1-3x)(4x+1)']/(4x+1)^2}
=(4x+1)/(1-3x) {[(-3)(4x+1)-4(1-3x)]/(4x+1)^2}
=(4x+1)/(1-3x) [(-7)/(4x+1)^2]
=(-7)/[(1-3x)(4x+1)]
=7/[(3x-1)(4x+1)]
[ln(1-3x)/(4x+1)]'
=(4x+1)/(1-3x) [(1-3x)/(4x+1)]'
=(4x+1)/(1-3x) {[(1-3x)'(4x+1)-(1-3x)(4x+1)']/(4x+1)^2}
=(4x+1)/(1-3x) {[(-3)(4x+1)-4(1-3x)]/(4x+1)^2}
=(4x+1)/(1-3x) [(-7)/(4x+1)^2]
=(-7)/[(1-3x)(4x+1)]
=7/[(3x-1)(4x+1)]