在△ABC中,
∠ABC+∠ACB+∠A=180°
∵∠A=110°
∴∠ABC+∠ACB=180°-∠A=180º-110°=70°
∵∠1=∠2,∠3=∠4
∴(∠1﹢∠2﹢∠3﹢∠4)=70°
即2﹙∠2﹢∠4﹚=70°
∠2﹢∠4=35°
∴x=180°-﹙∠2﹢∠4﹚=180°-35°=145°
在△ABC中,
∠ABC+∠ACB+∠A=180°
∵∠A=110°
∴∠ABC+∠ACB=180°-∠A=180º-110°=70°
∵∠1=∠2,∠3=∠4
∴(∠1﹢∠2﹢∠3﹢∠4)=70°
即2﹙∠2﹢∠4﹚=70°
∠2﹢∠4=35°
∴x=180°-﹙∠2﹢∠4﹚=180°-35°=145°