矩阵A可相似对角化,就是和你说的一样,其中a1,a2...一定是A的n个线性无关特征向量,对应的^一定是A的n个特征值.由此已知了全部特征值,就可知^,已知了对应的特征向量就可找到对应的P,则P-1AP=^ ,由此A=P^P-1.而“^”等...
已知矩阵的的特征值和特征向量,反过来求矩阵本身.
矩阵A可相似对角化,就是和你说的一样,其中a1,a2...一定是A的n个线性无关特征向量,对应的^一定是A的n个特征值.由此已知了全部特征值,就可知^,已知了对应的特征向量就可找到对应的P,则P-1AP=^ ,由此A=P^P-1.而“^”等...