(1)cosx≠0
x≠Kπ+π/2 K∈Z
(2)由tanα=-4/3可知:sinα=4/5,cosα=-3/5
得:sin2α=2sinα*cosα=-24/25
cos2α=1-2(sinα)^2=-7/25
f(α)=[1-√2sin(2α-π/4)]/cosα
=[1-√2(sin2α*cosπ/4-cos2α*sinπ/4)]/cosα
=[1-sin2α+cos2α]/cosα
=[1+24/25-7/25]/(-3/5)
=-14/5
(1)cosx≠0
x≠Kπ+π/2 K∈Z
(2)由tanα=-4/3可知:sinα=4/5,cosα=-3/5
得:sin2α=2sinα*cosα=-24/25
cos2α=1-2(sinα)^2=-7/25
f(α)=[1-√2sin(2α-π/4)]/cosα
=[1-√2(sin2α*cosπ/4-cos2α*sinπ/4)]/cosα
=[1-sin2α+cos2α]/cosα
=[1+24/25-7/25]/(-3/5)
=-14/5