根据题意,把两条直线写成对称式为:
L1:{x+2y-z+1=0,x-y+z-1=0,即:
(x+1)/2=(y-2)/-2=(z-4)/-3;
l2:{2x-y+z=0,x-y+z-1=0
(x+1)/0=(y-1)/-1=(z-3)/-1,此处第一项不要理解为分母为0,它的含义表示是直线的方向向量,不能简单地看成相除关系.
设所求平面的方程为:
ax+by+cz+d=0;
根据平面与两条直线平行,根据平面的法向向量和直线方向向量的乘积之和为0,可得到:
2a-2b-3c=0.(1)
0*a-b-c=0.(2)
点P(1,2,1)在平面上,可以得到:
a+2b+c+d=0.(3)
解方程可得到:
a=-b/2,c=-b,d=-b/2;
所以平面的方程为:
x-2y+2z+1=0