(1)由题意知A(a,0),B(0,b),∴直线l方程为
x
a +
y
b =1 ,即bx+ay-ab=0
曲线C表示一个圆,圆心C(1,1),半径r=1…(2分)∵直线与圆相切,∴
|a+b-ab|
a 2 + b 2 =1 ,…(4分)
两边平方整理得ab+2-2a-2b=0,即(a-2)(b-2)=2…(5分)
(2)设线段AB中点为M(x,y),由中点坐标公式得 x=
a
2 >1,y=
b
2 >1 ,即…(7分)a=2x,b=2y,代入(a-2)(b-2)=2得(2x-2)(2y-2)=2…(8分)
整理得AB中点M的轨迹方程为 (x-1)(y-1)=
1
2 (x>1,y>1) …(9分)
(3) S △AOB =
1
2 ab=
1
2 [-2+2(a+b)]=-1+a+b =(a-2)+(b-2)+3 ≥3+2
(a-2)•(b-2) =3+2
2 …(11分)(当且仅当a-2=b-2,又(a-2)(b-2)=2,即 a=b=2+
2 时取得等号)…(12分)
故△AOB面积的最小值为 3+2
2 …(13分)