(1)线段BD、DE、CE之间的等量关系式是:BD2+CE2=DE2;
理由:∵△ABC中,∠BAC=90°,AB=AC,
∴∠ABD=∠ACE=45°,由旋转的性质可知,△AEC≌△AFB,
∴∠ABF=∠ACE=45°,FB=CE
∴∠FBD=∠ABF+∠ABD=90°旋转角∠FAE=90°,又∠DAE=45°,
故∠FAD=∠FAE-∠DAE=45°,
易证△AFD≌△AED,故FD=DE,
在Rt△FBD中,由勾股定理得:BD2+BF2=DF2;
即:BD2+CE2=DE2.
(2)仿照(1)可证,△AEC≌△AFB,
故BF=CE,△AFD≌△AED,故FD=DE,
∵∠ADE=45°,
∴∠ADF=45°,故∠BDF=90°,
在Rt△BDF中,由勾股定理,得BF2=BD2+DF2,
∴CE2=BD2+DE2.