动点M(x,y)到圆C的切线长的平方=动点M到圆心C的距离的平方-R²,则:
切线长d=√[MC²-R²]
d:|MQ|=√2
d=√2|MQ|
d²=2|MQ|²
(x²+y²)-1=2×[(x-2)²+y²]
化简,得:
x²+y²-8x+9=0
这个就是动点M的轨迹方程.
动点M(x,y)到圆C的切线长的平方=动点M到圆心C的距离的平方-R²,则:
切线长d=√[MC²-R²]
d:|MQ|=√2
d=√2|MQ|
d²=2|MQ|²
(x²+y²)-1=2×[(x-2)²+y²]
化简,得:
x²+y²-8x+9=0
这个就是动点M的轨迹方程.