(2012•江西模拟)已知数列{a n}有a1=a,a2=p(常数p>0),对任意的正整数n,Sn=a1+a2

1个回答

  • 解题思路:(Ⅰ)n=1代入数列递推式,可得a的值;由a1=0得

    S

    n

    n

    a

    n

    2

    ,则

    S

    n+1

    (n+1)

    a

    n+1

    2

    ,两式相减,并整理,可得(n-1)an+1=nan,再写一式nan+2=(n+1)an+1,两式相减,可得an+2-an+1=an+1-an,从而可得结论;

    (Ⅱ)先表示出Pn,再利用裂项法求和,即可求得最小的正整数.

    (Ⅰ)由已知,得S1=

    1•(a−a)

    2=a1=a,∴a=0….(2分)

    由a1=0得Sn=

    nan

    2,则Sn+1=

    (n+1)an+1

    2,

    ∴2(Sn+1-Sn)=(n+1)an+1-nan,即2an+1=(n+1)an+1-nan

    于是有(n-1)an+1=nan,并且nan+2=(n+1)an+1

    ∴nan+2-(n-1)an+1=(n+1)an+1-nan,即n(an+2-an+1)=n(an+1-an

    则有an+2-an+1=an+1-an

    ∴{an}为等差数列;….(7分)

    (Ⅱ)∵Sn=

    n(n−1)p

    2,∴Pn=

    (n+2)(n+1)p

    2

    (n+1)np

    2+

    (n+1)np

    2

    (n+2)(n+1)p

    2=2+

    2

    n−

    2

    n+2

    ∴P1+P2+P3+…+Pn−2n=(2+

    2

    1−

    2

    3)+(2+

    2

    2−

    2

    4)+…+(2+

    2

    n−

    2

    n+2)−2n=2+1−

    2

    n+1−

    2

    n+2;由n是整数可得P1+P2+P3+…+Pn-2n<3,

    故存在最小的正整数M=3,使不等式P1+P2+P3+…+Pn-2n≤M恒成立….(12分)

    点评:

    本题考点: 数列与不等式的综合;等差关系的确定.

    考点点评: 本题考查数列递推式,考查等差数列的证明,考查裂项法求数列的和,正确运用数列递推式是关键.