已知tan(α+β)=1/3,tan2β=-2;求tan2α的值
tan[2(α+β)]=2tan(α+β)/[1-tan²(α+β)]=(2/3)/(1-1/9)=3/4
tan2α=tan[2(α+β)-2β]=[tan2(α+β)-tan2β]/[1+tan2(α+β)tan2β]=(3/4+2)/[1+(3/4)(-2)]
=(11/4)/(-1/2)=-11/2.
已知tan(α+β)=1/3,tan2β=-2;求tan2α的值
tan[2(α+β)]=2tan(α+β)/[1-tan²(α+β)]=(2/3)/(1-1/9)=3/4
tan2α=tan[2(α+β)-2β]=[tan2(α+β)-tan2β]/[1+tan2(α+β)tan2β]=(3/4+2)/[1+(3/4)(-2)]
=(11/4)/(-1/2)=-11/2.