当n=k时,左边的代数式为[1/k+1]+[1/k+2]+…+[1/k+k],(共k项)
当n=k+1时,左边的代数式为[1/k+1+1]+[1/k+1+2]+…+[1/k+1+k]+[1
k+1+(k+1)(共k+1项)
故用n=k+1时左边的代数式减去n=k时左边的代数式的结果,
1
(k+1)+k+
1
(k+1)+(k+1)-
1/k+1]
即为不等式的左边增加的项.
故答案为:[1
(k+1)+k+
1
(k+1)+(k+1)-
1/k+1].
当n=k时,左边的代数式为[1/k+1]+[1/k+2]+…+[1/k+k],(共k项)
当n=k+1时,左边的代数式为[1/k+1+1]+[1/k+1+2]+…+[1/k+1+k]+[1
k+1+(k+1)(共k+1项)
故用n=k+1时左边的代数式减去n=k时左边的代数式的结果,
1
(k+1)+k+
1
(k+1)+(k+1)-
1/k+1]
即为不等式的左边增加的项.
故答案为:[1
(k+1)+k+
1
(k+1)+(k+1)-
1/k+1].