过A做AF⊥BC,交BC于F
设∠CAD = ∠1
∠EAD = ∠2
∠EAF = ∠3
∠BAF = ∠4
∵EA分为∠BAC
∴∠3+∠4 = ∠1+∠2
∵△ABF∽△CBA
∴∠4 = ∠C
∵D是Rt△BAC斜边BC上的中点.
∴AD = CD = BC/2
∴∠1 = ∠C
∴∠1 = ∠4
∴∠2 = ∠3
∵AF‖DE
∴∠E = ∠3
∴∠2 = ∠E
∴AD = DE
∴DE= BC/2
∴2DE=BC
过A做AF⊥BC,交BC于F
设∠CAD = ∠1
∠EAD = ∠2
∠EAF = ∠3
∠BAF = ∠4
∵EA分为∠BAC
∴∠3+∠4 = ∠1+∠2
∵△ABF∽△CBA
∴∠4 = ∠C
∵D是Rt△BAC斜边BC上的中点.
∴AD = CD = BC/2
∴∠1 = ∠C
∴∠1 = ∠4
∴∠2 = ∠3
∵AF‖DE
∴∠E = ∠3
∴∠2 = ∠E
∴AD = DE
∴DE= BC/2
∴2DE=BC