等差数列{an},{bn}的前n项和分别为Sn,Tn,若Sn/Tn=2n/3n+1,则a3/b3等于多少?
1个回答
a3/b3
=2a3/2b3
=(a1+a5)/(b1+b5)
=[(a1+a5)*5/2]/[(b1+b5)*5/2]
=S5/T5
=2*5/(3*5+1)
相关问题
等差数列{an},{bn}的前n项分别为Sn,Tn,若Sn/Tn=2n/3n+1,则an/bn=多少?
等差数列{an},{bn}的前n项和分别为Sn,Tn,Sn/Tn=2n/3n+1则a3/b5
等差数列{an}、{bn}的前n项和分别为Sn、Tn,若Sn/Tn=2n/3n+1,求an/bn
设Sn ,Tn分别为等差数列{an}{bn}的前n项和,Sn/Tn=(5n-2)/(n+3),则an/bn=?
数学问题: 等差数列{an},{bn}的前n项和分别为Sn,Tn,若Sn/Tn=2n/3n+1,则an/bn等于多少?
等差数列{an}{bn}的前n项和分别为Sn,Tn,若Sn/Tn=2n/3n+1,求a5/b5=多少
等差数列{an},{bn},的前n项和分别为Sn,Tn且Sn/Tn=(3n-1)/(2n+3)则a8/b8=
等差数列{an}和{bn}的前n项和分别为Sn和Tn,且Sn/Tn=2n/3n+1,则a3/b5=
等差数列{an} {bn}的前n项的分别为Sn Tn.若Sn/Tn=2n/(3n+1),则求an/bn的极限
等差数列{an}{bn},前n项和分别为Sn,Tn,Sn/Tn=n+4/4n+3,则a5/b5=?