f(x)为密度函数,因此从负无穷到正无穷的积分为1,
而f(x)是偶函数,因此从负无穷到0的积分为1/2
F(-C)=∫负无穷到-c f(x)dx
=∫负无穷到0 f(x)dx +∫0到-c f(x)dx
=1/2+∫0到-c f(x)dx
对于积分 ∫0到-c f(x)dx 做变量替换 y=-x
∫0到-c f(x)dx=∫0到c f(-y)d(-y)=-∫0到c f(-y)dy
=-∫0到c f(y)dy (因为f为偶函数)
=-∫0到c f(x)dx (定积分与积分变量的记号无关)
综上即得待证结论.