在平面直角坐标系XOY中,以C(1,-2)为圆心的圆与直线x+y+3√2+1=0相切.求过点(3,4)

2个回答

  • 因为以C(1,-2)为圆心的圆与直线x+y+3√2+1=0相切

    从而可以通过点到直线的距离公式求得

    半径 r=(1-2+3根号2+1)/根号2=3

    过点(3,4)的直线截得圆C所得的弦长为2倍根号5

    圆的半径与弦长的一半组成直角三角形,

    从而得到圆心到直线l的距离为d=2

    1、当直线l斜率不存在时,即x=3 显然满足条件

    2、当k存在时 设直线为-y+4+k(x-3)=0

    由点到直线的距离公式 (4+2-2k)/根号(k^2+1)=2

    解得 k= 4/3

    所以直线l为 y-4=4/3(x-3)或 x=3