n=1时,
a1=S1=(3/2)(a1-1)=(3/2)a1 -3/2
(1/2)a1=3/2
a1=3
n≥2时,
Sn=(3/2)(an -1) S(n-1)=(3/2)[a(n-1)-1]
Sn-S(n-1)=an=(3/2)(an -1)-(3/2)[a(n-1)-1]
an=3a(n-1)
an/a(n-1)=3,为定值.
数列{an}是以3为首项,3为公比的等比数列.
an=3×3^(n-1)=3ⁿ
数列{an}的通项公式为an=3ⁿ.
n=1时,
a1=S1=(3/2)(a1-1)=(3/2)a1 -3/2
(1/2)a1=3/2
a1=3
n≥2时,
Sn=(3/2)(an -1) S(n-1)=(3/2)[a(n-1)-1]
Sn-S(n-1)=an=(3/2)(an -1)-(3/2)[a(n-1)-1]
an=3a(n-1)
an/a(n-1)=3,为定值.
数列{an}是以3为首项,3为公比的等比数列.
an=3×3^(n-1)=3ⁿ
数列{an}的通项公式为an=3ⁿ.