∫ xarctanx dx
= ∫ arctanx d(x²/2)
= (x²/2)arctanx - (1/2)∫ x² d(arctanx)
= (1/2)x²arctanx - (1/2)∫ x²/(x² + 1) dx
= (1/2)x²arctanx - (1/2)∫ [(x² + 1) - 1]/(x² + 1) dx
= (1/2)x²arctanx - (1/2)∫ dx + (1/2)∫ dx/(x² + 1)
= (1/2)x²arctanx - x/2 + (1/2)arctanx + C