1/a+1/b=1/6,
1/b+1/c=1/9,
1/c+1/a=1/15,
三式相加,得,
2(1/a+1/b+1/c)=1/6+1/9+1/15,
所以1/a+1/b+1/c=31/180,
所以ab+bc+ca分之abc
=abc/(ab+bc+ac)
=1/(ab+bc+ca)÷abc
=1/(1/c+1/a+1/b)
=1/(31/180)
=180/31
1/a+1/b=1/6,
1/b+1/c=1/9,
1/c+1/a=1/15,
三式相加,得,
2(1/a+1/b+1/c)=1/6+1/9+1/15,
所以1/a+1/b+1/c=31/180,
所以ab+bc+ca分之abc
=abc/(ab+bc+ac)
=1/(ab+bc+ca)÷abc
=1/(1/c+1/a+1/b)
=1/(31/180)
=180/31