大学高数极限求解已知lim┬(x→0)⁡〖(x^2 f(x)+cosx-1)/x^4 〗=0 求lim┬(x→0)⁡〖(

1个回答

  • 这个写起来有点麻烦啊,不懂百度HI我.

    由条件可知:

    x^2 f(x)+cosx-1=o(x^4),即x^2 f(x)+cosx-1是x^4的高阶无穷小.

    然后移项:f(x)=(o(x^4)-cosx+1)/x^2

    代入要求结果的式子:2f(x)-1/2x^2 可化为(x^2-cosx)/2x^4(化简过程中利用到o(x^4)/x^4在x趋于0时极限为0)然后连续利用四次洛必达法则,或直接利用泰勒公式即将cosx替换为1-1/2x+1/24x^4+o(x^4)可得结果.如果不会利用泰勒公式的话,就只有用洛必达法则了,不过洛必达法则有一定局限性,在有时候还是必须利用泰勒公式.