C。
∵Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90 0,
∴AD =DC,∠EAD=∠C=45 0,∠EDA=∠MDN-∠ADN =90 0-∠AND=∠FDC。
∴△EDA≌△FDC(ASA)。∴AE=CF。∴BE+CF=" BE+" AE=AB。
在Rt△ABC中,根据勾股定理,得AB=
BC。∴(BE+CF)=
BC。∴结论①正确。
设AB=AC=a,AE=b,则AF="BE=" a-b。
∴
。
∴
。∴结论②正确。
如图,过点E作EI⊥AD于点I,过点F作FG⊥AD于点G,过点F作FH⊥BC于点H,ADEF相交于点O。
∵四边形GDHF是矩形,△AEI和△AGF是等腰直角三角形,
∴EO≥EI(EF⊥AD时取等于)=FH=GD,
OF≥GH(EF⊥AD时取等于)=AG。
∴EF=EO+OF≥GD+AG=AD。∴结论④错误。
∵△EDA≌△FDC,
∴
。∴结论③错误。
又当EF是Rt△ABC中位线时,根据三角形中位线定理知AD与EF互相平分。
∴结论⑤正确。
综上所述,结论①②⑤正确。故选C。