设下雨为事件A,不下雨为事件A',打伞为事件B,不打伞为事件B',则:
P(A)=2/3,P(A')=1/3,P(B|A)=1,P(B|A')=1/2
所以问题为
P(A|B)
=P(AB)/P(B)
=P(B|A)P(A)/(P(B|A)P(A)+P(B|A')P(A'))
=(2/3)/(2/3+(1/2)*(1/3))
=4/5
设下雨为事件A,不下雨为事件A',打伞为事件B,不打伞为事件B',则:
P(A)=2/3,P(A')=1/3,P(B|A)=1,P(B|A')=1/2
所以问题为
P(A|B)
=P(AB)/P(B)
=P(B|A)P(A)/(P(B|A)P(A)+P(B|A')P(A'))
=(2/3)/(2/3+(1/2)*(1/3))
=4/5