已知数列{a n }的前n项和为S n ,且S n =n(n+1)(n∈N * ).

1个回答

  • (Ⅰ)当n=1时,a 1=S 1=2,

    当n≥2时,a n=S n-S n-1=n(n+1)-(n-1)n=2n,

    知a 1=2满足该式,

    ∴数列{a n}的通项公式为a n=2n.(2分)

    (Ⅱ)∵ a n =

    b 1

    3+1 +

    b 2

    3 2 +1 +

    b 3

    3 3 +1 +…+

    b n

    3 n +1 (n≥1)①

    ∴ a n+1 =

    b 1

    3+1 +

    b 2

    3 2 +1 +

    b 3

    3 3 +1 +…+

    b n

    3 n +1 +

    b n+1

    3 n+1 +1 ②(4分)

    ②-①得:

    b n+1

    3 n+1 +1 = a n+1 - a n =2 ,

    b n+1=2(3 n+1+1),

    故b n=2(3 n+1)(n∈N *).(6分)

    (Ⅲ) c n =

    a n b n

    4 =n(3 n+1)=n•3 n+n,

    ∴T n=c 1+c 2+c 3+…+c n=(1×3+2×3 2+3×3 3+…+n×3 n)+(1+2+…+n)(8分)

    令H n=1×3+2×3 2+3×3 3+…+n×3 n,①

    则3H n=1×3 2+2×3 3+3×3 4+…+n×3 n+1

    ①-②得:-2H n=3+3 2+3 3+…+3 n-n×3 n+1
    =

    3(1- 3 n )

    1-3 -n× 3 n+1

    ∴ H n =

    (2n-1)× 3 n+1 +3

    4 ,…(10分)

    ∴数列{c n}的前n项和 T n =

    (2n-1)× 3 n+1 +3

    4 +

    n(n+1)

    2 …(12分)