已知,如图,在平行四边形ABCD中,O是AC的中点,EF过点O,分别与边AD、BC交于点E、F,

1个回答

  • 解题思路:由平行四边形的性质可知:AE∥CF,根据条件AO=OC,可证明△AOE≌△COF,由全等三角形的性质可知OE=OF,所以四边形AFCE是平行四边形,再由平行四边形的性质可知:EC∥AF.

    证明:∵四边形ABCD为平行四边形,

    ∴AD∥BC.

    ∴∠DAC=∠BCA.

    ∵O为AC的中点,

    ∴AO=CO.

    又∵∠AOE=∠COF,

    ∴△AOE≌△COF(ASA).

    ∴EO=FO.

    ∴四边形AECF为平行四边形,

    ∴EC∥AF.

    点评:

    本题考点: 平行四边形的判定与性质;全等三角形的判定与性质.

    考点点评: 本题考查了平行四边形的性质和判定以及全等三角形的判定和性质,特别是平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.