证明:(1)∵mx2-(3m+2)x+2m+2=0是关于x的一元二次方程,
∴△=[-(3m+2)]2-4m(2m+2)=m2+4m+4=(m+2)2
∵m≠0,
∴(m+2)2≥0,即△≥0
∴方程有实数根;
(2)由求根公式,得x=(3m+2)±(m+2)2m.
∴x=2m+2m或x=1
∵2m+2m=2+2m
∵m>0,
∴2m+2m=2+2m>2
∵x1<x2,
∴x1=1,x2=2m+2m
∴y=x2-2x1=2m+2m-2×1=2m
即y=2m(m>0)为所求.
证明:(1)∵mx2-(3m+2)x+2m+2=0是关于x的一元二次方程,
∴△=[-(3m+2)]2-4m(2m+2)=m2+4m+4=(m+2)2
∵m≠0,
∴(m+2)2≥0,即△≥0
∴方程有实数根;
(2)由求根公式,得x=(3m+2)±(m+2)2m.
∴x=2m+2m或x=1
∵2m+2m=2+2m
∵m>0,
∴2m+2m=2+2m>2
∵x1<x2,
∴x1=1,x2=2m+2m
∴y=x2-2x1=2m+2m-2×1=2m
即y=2m(m>0)为所求.