函数极限计算 若lim(x→∞)【5x-根号下(ax^2+bx+1)】=2.求a,b

1个回答

  • ∵lim(x→∞)[5x-√(ax^2+bx+1)]

    =lim(x→∞){[25x^2-(ax^2+bx+1)]/[5x+√(ax^2+bx+1)]}=2,

    ∴a=25.

    否则,分子相对分母来说是高阶无穷大,

    ∴lim(x→∞){[25x^2-(ax^2+bx+1)]/[5x+√(ax^2+bx+1)]}=∞,而不是2.

    由a=25,得:

    lim(x→∞)[5x-√(ax^2+bx+1)]

    =lim(x→∞){-(bx+1)/[5x+√(25x^2+bx+1)]}

    =-lim(x→∞){(b+1/x)/[5+√(25+b/x+1/x^2)]}

    =-(b+0)/[5+√(25+0+0)]

    =-b/10

    =2,

    ∴b=-20.

    ∴满足条件的a、b的值分别是25、-20.